

ПРЕДПРИЯТИЕ ГОСКОРПОРАЦИИ «РОСАТОМ:

ГОСУДАРСТВЕННАЯ КОРПОРАЦИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО АТОМНОЙ ЭНЕРГИИ «РОСАТОМ»

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ ФЕДЕРАЛЬНЫЙ НАУЧНО-ПРОИЗВОДСТВЕННЫЙ ЦЕНТР «ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ «СТАРТ» ИМЕНИ М.В. ПРОЦЕНКО»

О предприятии

ФГУП ФНПЦ «ПО «Старт» им. М.В. Проценко» является крупнешим предприятием Пензенской области и одним из динамично развивающимся предприятием отрасли, специализирующимся на выпуске наукоемких радиотехнических, электромеханических и электронных приборов и систем высокого класса точности и надежности для нужд как военно-промышленного, так и гражданского назначения.

ПО «Старт» предлагает

Сотрудничество по поставке твердосплавных фрез и свёрл

Более чем 55-летний опыт в механообработке позволил изучить данный вид продукции и организовать выпуск наиболее качественного и востребованного инструмента.

ПО «Старт» имеет опыт поставок твердосплавного инструмента на различные предприятия. Высокое качество и износостойкость инструмента подтверждены положительными отзывами потребителей.

Преимущества инструмента, производства «ПО «Старт»

- цена ниже ведущих мировых брендов при сопоставимом качестве;
- применение в производстве инструментальных материалов ведущих мировых производителей;
- изготовление инструмента осуществляется в срок до 10 дней, в том числе малыми партиями, постоянный складской запас 2 тыс. шт.;
- возможность апробации инструмента при индивидуальном заказе;
- возможность переточки и перепокрытия изношенного инструмента собственного изготовления;
- специалисты ПО «Старт» готовы оказать помощь в подборе инструмента, в т.ч. с выездом на место;
- современная маркировка и эргономичная упаковка, соответствующая международным стандартам.

Изготовление и контроль геометрических параметров

- участок изготовления концевого инструмента оснащен высокопроизводительными 5-осевыми станками с ЧПУ фирм Walter и ANCA;
- для бесконтактного измерения геометрических параметров режущего инструмента в проходящем и отраженном свете применяется измерительная машина Zoller Genius 3;
- все результаты измерения подробно регистрируются в протоколах измерения и передаются на формат данных управления с ЧПУ одним нажатием на кнопку.

Нанесение покрытий

Новое оборудование позволяет наносить многослойные, композиционные, градиентные, нано-композитные, наноградиентные, нанослойные PVD-покрытия магнитронным и вакуумно-дуговым методами. Наши покрытия способны обеспечить стойкость инструмента при больших скоростях резания.

Наименование покрытий	nscomp1 nscomp2		nscomp3	comp3	comp4	
Твердость (HV)	3700	3700	3700	2100	1700	
Температура окисления, С° (Т окисл., С°)	850	850	900	700	700	

Контроль качества покрытий

Контроль качества покрытий осуществляется с помощью системы наноидентации PVD-покрытий FISCHERSCOPE-HM2000.

С помощью системы наноидентации анализируются до 10 показателей качества PVD-покрытий, в том числе микротвердость по Виккерсу, пластическая твердость, упругое восстановление, стойкость к пластической деформации и другие. Адгезия покрытия определяется по стандарту VDI 3198.

Система кодирования цельных твердосплавных фрез

AA. BB. CCC. DD. EE *

	Технические характеристики
AA	СЕРИЯ 01 - для обработки легких сплавов 02 - для черновой обработки легких сплавов и конструкционных сталей 03 - для получистовой и чистовой обработки легких сплавов 04 - для черновой и получистовой обработки конструкционных сталей и титановых сплавов 05 - для получистовой и чистовой обработки конструкционных и нержавеющих сплавов 06 - для черновой, получистовой и чистовой обработки конструкционных сталей, а также для титановых и жаропрочных сплавов 07 - для чистовой обработки нержавеющих сталей, титановых сплавов и жаропрочных сплавов 08 - для высокоскоростной обработки легких сплавов 09 - для получистовой и чистовой обработки конструкционных сталей, а также нержавеющих, титановых и легких сплавов 10 - для чистовой обработки конструкционных, нержавеющих сталей, жаропрочных и титановых сплавов 11 - для чистовой обработки закаленных сталей
BB	Диаметр фрезы
CCC	Общая длина фрезы
DD	Длина режущей части фрезы
EE	Тип обрабатываемого материала
*	ДОПОЛНИТЕЛЬНЫЕ ПАРАМЕТРЫ ФРЕЗЫ (по желанию заказчика) RXX – двухзначное значение радиуса, где «XX» - численное значение радиуса в десятых долях мм - FXX – двухзначное значение фаски, «XX» - численное значение фаски в десятых долях мм

Система кодирования цельных твердосплавных фрез

	Таблица значений обрабатываемых материалов							
EE	ТИП МАТЕРИАЛА							
00	Легкие сплавы							
10	Конструкционные стали твердостью до 32 HRC							
11	Конструкционные стали твердостью до 45 HRC							
21	Нержавеющие стали твердостью до 32 HRC							
22	Нержавеющие стали твердостью до 45 HRC							
30	Титановые сплавы							
40	Жаропрочные сплавы							

ПРИМЕР:

02.06.053.13.00.R06 – фреза цельная концевая трехзубая, твердосплавная с цилиндрической режущей частью, плоским торцом и углом наклона спирали 30°, диаметром 6 мм общей длиной 53 мм с длиной режущей части 13 мм, тип обрабатываемого материала – легкие сплавы. Фреза с радиусом при вершине 0,6 мм.

Система менеджмента качества

ФГУП ФНПЦ «ПО «Старт» им. М.В. Проценко» гарантирует стабильно высокое качество выпускаемой продукции. Режущий инструмент нашего предприятия изготавливается в соответствии с техническими условиями («Фрезы цельные концевые твердосплавные с упрочняющим покрытием» ТУ 3918-001-08847173-2014 и «Сверла спиральные цельные твердосплавные» ТУ 3912-001-08847173-2015), которые устанавливают нормы качества и регламентируют процесс его выпуска.

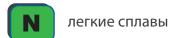
На ФГУП ФНПЦ «ПО «Старт» им. М.В. Проценко» функцинирует система менеджмента качества, которая является частью системы управления предприятием и направлена на достижение результатов в соответствии с политикой и целями в области качества, удовлетворения нужд и ожиданий заказчиков.

СМК функционирует на основе стандартов отрасли, ГОСТ ISO 9001, ГОСТ PB 0015-002-2012.

Обозначения

Прямой угол, радиус, фаска

угол наклона спирали



радиус

фаска

Обрабатываемый материал

м нержавеющие стали до 45 HRC

титановые и жаропрочные сплавы

Количество зубьев

двухзубая

трехзубая

четырехзубая

шестизубая

десятизубая

Длина фрезы

удлиненная

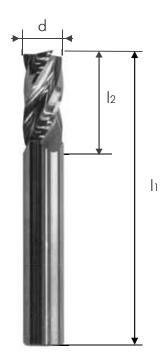
стандартная

Концевые 2-зубые фрезы Серия 01

Назначение: для обработки легких сплавов.

Основные геометрические характеристики

d -0.02, мм	I1, mm	I2, mm	Маркировка
3	50	8	01.03.050.08.00
4	50	11	01.04.050.11.00
5	53	13	01.05.053.13.00
6	53	13	01.06.053.13.00
8	64	19	01.08.064.19.00
10	72	22	01.10.072.22.00
12	80	26	01.12.080.26.00
14	80	26	01.14.080.26.00
16	92	32	01.16.092.32.00


Материал	Скорость	Диаметр инструмента, мм								
	резания	3	4	5	6	8	10	12	14	16
	(м/мин)	Подача/Число оборотов шпинделя, мм/мин/ об/мин								
Алюминий и	280	250	310	510	580	700	900	1150	1530	2010
его сплавы	200	29 724	22 293	17834	14862	11 146	8 917	7 431	6 369	5 573
Медь и	224	130	140	180	190	220	310	380	430	710
ее сплавы		23 779	17 834	14 268	11 890	8 917	7 134	5 945	5 096	4 459

^{*} Режимы резания расчитаны на период стойкости инструмента равному 60 мин и могут быть изменены, исходя из конкретных условий обработки.

При отсутствии возможности установить указанное значение количества оборотов шпинделя допускается снижение данного значения с пропорциональным уменьшением подачи и скорости резания.

Концевые 3-зубые фрезы

Серия 02

Назначение: для черновой обработки легких сплавов и конструкционных сталей.

Основные геометрические характеристики

d -0.02, mm	I 1, мм	l2, mm	Маркировка
3	50	8	02.03.050.08.EE
4	53	11	02.04.053.11.EE
5	53	13	02.05.053.13.EE
6	53	13	02.06.053.13.EE
8	64	19	02.08.064.19.EE
10	72	22	02.10.072.22.EE
12	80	26	02.12.080.26.EE
14	80	26	02.14.080.26.EE
16	92	32	02.16.092.32.EE

С радиусом при вершине

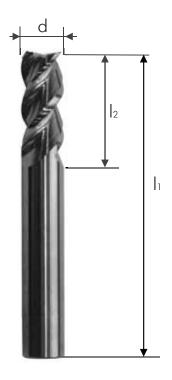
d -0.02, мм	I 1, мм	12, мм	R, MM	Маркировка
6	53	13	0,6	02.06.053.13.EE.R06
8	64	19	0,8	02.08.064.19.EE.R08
10	72	22	1,0	02.10.072.22.EE.R10
12	80	26	1,2	02.12.080.26.EE.R12
14	80	26	1,4	02.14.080.26.EE.R14
16	92	32	1,6	02.16.092.32.EE.R16

С фаской при вершине

d 1-0.02, мм	I 1, мм	12, мм	Fx45°, мм	Маркировка
3	50	8	0,1	02.03.050.08.EE.F01
4	53	11	0,1	02.04.053.11.EE.F01
5	53	13	0,1	02.05.053.13.EE.F01
6	53	13	0,1	02.06.053.13.EE.F01
8	64	19	0,1	02.08.064.19.EE.F01
10	72	22	0,1	02.10.072.22.EE.F01
12	80	26	0,1	02.12.080.26.EE.F01
14	80	26	0,15	02.14.080.26.EE.F015
16	92	32	0,15	02.16.092.32.EE.F015

ЕЕ – тип обрабатываемого материала

EE	Тип материала
00	Лёгкие сплавы
10	Конструкционные стали твёрдостью до 32 HRC


Материал Твердос		ъ Скорость	Диаметр инструмента, мм									
	HRC	резания (м/мин)	3	4	5	6	8	10	12	14	16	
		(IVI/IVIVIA)	Подача/Число оборотов шпинделя, мм/мин/ об/мин									
Алюминий и	_	280	380	450	760	680	1050	1340	1730	2280	3000	
его сплавы		200	29724	22 293	17834	14862	11146	8 917	7431	6396	5573	
Медь и ее		_	224	190	200	260	280	340	450	570	640	1060
сплавы		227	23779	17834	14268	11890	8 917	7134	5 945	5 0 9 6	4459	
	<29,2	76	260	280	290	260	220	190	190	180	270	
Конструк-	\Z9,Z	70	8 086	6 051	4841	4034	3 025	2 420	2 017	1729	1513	
ционные	<23	100	260	300	340	330	370	408	370	360	350	
стали	\23	100	10616	7 962	6 369	5 308	3 981	3 185	2 654	2 275	1990	
	<21,3	112	300	340	410	420	440	480	460	450	490	
	\21,5		11 890	8 917	7 134	5 945	4 459	3 567	2 972	2 548	2229	

^{*} Режимы резания расчитаны на период стойкости инструмента равному 60 мин и могут быть изменены, исходя из конкретных условий обработки.

При отсутствии возможности установить указанное значение количества оборотов шпинделя допускается снижение данного значения с пропорциональным уменьшением подачи и скорости резания.

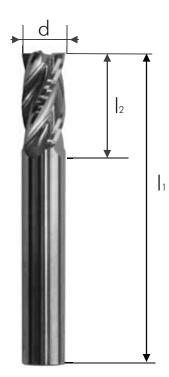
Концевые 3-зубые фрезы

Серия 03

Назначение: для получистовой и чистовой обработки легких сплавов.

Основные геометрические характеристики

d -0.02, мм	I1, mm	I2, mm	Маркировка
5	53	13	03.05.053.13.00
6	53	13	03.06.053.13.00
8	64	19	03.08.064.19.00
10	72	22	03.10.072.22.00
12	80	26	03.12.080.26.00
14	80	26	03.14.080.26.00
16	92	32	03.16.092.32.00


Материал	Скорость	Диаметр инструмента, мм								
	резания,	5	6	8	10	12	14	16		
	м/мин	Подача/Число оборотов шпинделя, мм/мин/ об/мин								
Алюминий и	280	250	310	510	580	700	900	1150		
его сплавы		17 834	14 862	11 146	8 917	7 431	6 369	5 573		
Медь и ее	224	130	140	180	190	220	310	380		
сплавы		14 268	11 890	8 917	7 134	5 945	5 096	4 459		

^{*} Режимы резания расчитаны на период стойкости инструмента равному 60 мин и могут быть изменены, исходя из конкретных условий обработки.

При отсутствии возможности установить указанное значение количества оборотов шпинделя допускается снижение данного значения с пропорциональным уменьшением подачи и скорости резания.

Концевые 4-зубые фрезы

Серия 04

Назначение: для черновой обработки и получистовой обработки конструкционных сталей и титановых сплавов.

Основные геометрические характеристики

d -0.02, mm	I1, mm	12, мм	Маркировка
3	50	8	04.03.050.08.EE
4	53	11	04.04.053.11.EE
5	53	13	04.05.053.13.EE
6	53	13	04.06.053.13.EE
8	64	19	04.08.064.19.EE
10	72	22	04.10.072.22.EE
12	80	26	04.12.080.26.EE
14	80	26	04.14.080.26.EE
16	92	32	04.16.092.32.EE

С радиусом при вершине

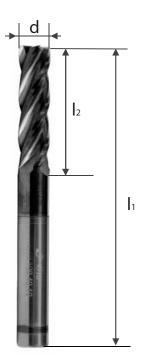
d 1-0.02, мм	I 1, мм	12, mm	R, MM	Маркировка
6	53	13	0,6	04.06.053.13.EE.R06
8	64	19	0,8	04.08.064.19.EE.R08
10	72	22	1,0	04.10.072.22.EE.R10
12	80	26	1,2	04.12.080.26.EE.R12
14	80	26	1,4	04.14.080.26.EE.R14
16	92	32	1,6	04.16.092.32.EE.R16

С фаской при вершине

d 1-0.02, мм	I 1, мм	12, мм	Fx45°, _{мм}	Маркировка
8	64	19	0,1	04.08.064.19.EE.F01
10	72	22	0,1	04.10.072.22.EE.F01
12	80	26	0,1	04.12.080.26.EE.F01
14	80	26	0,15	04.14.080.26.EE.F015
16	92	32	0,15	04.16.092.32.EE.F015

ЕЕ – тип обрабатываемого материала

EE	Тип материала
10	Конструкционные стали твердостью до 32 HRC
11	Конструкционные стали твердостью до 45 HRC
30	Титановые сплавы


Материал	Твердость	Скорость			Диаме	тр инст	грумент	га, мм					
	HRC	резания (м/мин)	3	4	5	6	8	10	12	14	16		
		(IVI) IVIVITI)	П	одача/Ч	исло об	оротов	шпинд	целя, ми	и/мин/	об/миі	н		
	36,6	9	22	20	22	24	22	22	25	28	31		
Титановые	30,0		955	717	573	478	358	287	239	205	179		
сплавы	27,8	28	71	71	78	88	80	78	90	100	130		
	27,0	20	2 972	2 229	1 783	1 486	1 115	892	743	637	557		
	20,3	60	200	170	180	220	190	180	210	230	330		
	20,3	00	6 369	4 777	3 822	3 185	2 389	1 911	1 592	1 365	1194		
	42.7	42,7 32	120	120	120	120	110	90	90	90	150		
	72,7		3 397	2 548	2 038	1 699	1 274	1 019	849	782	637		
Voustpur	40.8	40,8 40	120	110	120	130	130	100	100	100	140		
Конструк- ционные	10,0		4 246	3 185	2 548	2 123	1 592	1 274	1 062	910	796		
стали	35,5	56	210	210	210	220	220	190	180	180	280		
Clanin	33/3	30	5 945	4 459	3 567	2 972	2 229	1 783	1 486	1274	1115		
	29,2	20.2	20.2	76	360	390	390	350	350	260	260	250	360
		70	8 086	6 051	4 841	4034	3 025	2 420	2 017	1729	1513		
	23	100	360	410	460	440	440	550	510	500	480		
		.00	10 616	7 962	6 369	5 308	3 981	3 185	2 654	2 275	1990		
	21,3	112	410	460	560	570	570	640	620	610	670		
	2.,5		11890	8 917	7 134	5 945	4 459	3 567	2 972	2 548	2229		

^{*} Режимы резания расчитаны на преиод стойкости инструмента равному 60 мин и могут быть изменены, исходя из конкретных условий обработки.

При отсутствии возможности установить указанное значение количества оборотов шпинделя допускается снижение данного значения с пропорциональным уменьшением подачи и скорости резания.

Концевые 4-зубые фрезы

Серия 04 удлиненные

Назначение: для чистовой и получистовой обработки конструкционных сталей и титановых сплавов.

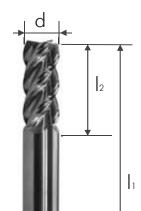
Основные геометрические характеристики

d -0.02, mm	I 1, мм	I 2, mm	Маркировка
3	53	15	04.03.053.15.EE
5	64	20	04.05.064.20.EE
6	80	30	04.06.080.30.EE
8	80	35	04.08.080.35.EE
10	108	60	04.10.108.60.EE
12	108	60	04.12.108.60.EE
14	108	60	04.14.108.60.EE
16	162	85	04.16.162.85.EE

С фаской при вершине

d 1-0.02, мм	I1,mm	I ₂ , mm	Fx45°,mm	Маркировка
3	53	15	0,1	04.03.053.15.EE.F01
5	64	20	0,1	04.05.064.20.EE.F01
6	80	30	0,1	04.06.080.30.EE.F01
8	80	35	0,1	04.08.080.35.EE.F01
10	108	60	0,1	04.10.108.60.EE.F01
12	108	60	0,1	04.12.108.60.EE.F01
14	108	60	0,15	04.14.108.60.EE.F015
16	162	85	0,15	04.16.162.85.EE.F015

ЕЕ - тип обрабатываемого материала


EE	Тип материала
10	Конструкционные стали твердостью до 32 HRC
11	Конструкционные стали твердостью до 45 HRC
30	Титановые сплавы

Материал	Твердость	Скорость	Диаметр инструмента, мм								
	HRC	резания (м/мин)	3	4	5	6	8	10	12	14	16
		(IVI/IVIVIFI)	П	одача/Ч	исло об	оротов	шпинд	еля, ми	и/мин/	об/миі	н
	36,6	9	22	20	22	24	22	22	25	28	31
Титановые	30,0		955	717	573	478	358	287	239	205	179
сплавы	27,8	28	71	71	78	88	80	78	90	100	130
	27,0	20	2 972	2 229	1 783	1 486	1 115	892	743	637	557
	20.2	60	200	170	180	220	190	180	210	230	330
	20,3	00	6 369	4 777	3 822	3 185	2 389	1 911	1 592	1 365	1194
	42,7	32	120	120	120	120	110	90	90	90	150
	72,7	32	3 397	2 548	2 038	1 699	1 274	1 019	849	782	637
Value Travel	40,8	8 40	120	110	120	130	130	100	100	100	140
Конструк- ционные	40,0		4 246	3 185	2 548	2 123	1 592	1 274	1 062	910	796
стали		56	210	210	210	220	220	190	180	180	280
Clann	33,3	30	5 945	4 459	3 567	2 972	2 229	1 783	1 486	1274	1115
	29,2 76	76	360	390	390	350	350	260	260	250	360
		70	8 086	6 051	4 841	4034	3 025	2 420	2 017	1729	1513
	23	100	360	410	460	440	440	550	510	500	480
			10 616	7 962	6 369	5 308	3 981	3 185	2 654	2 275	1990
	21,3	112	410	460	560	570	570	640	620	610	670
	,-		11890	8 917	7 134	5 945	4 459	3 567	2 972	2 548	2229

^{*} Режимы резания расчитаны на период стойкости инструмента равному 60 мин и могут быть изменены, исходя из конкретных условий обработки.

При отсутствии возможности установить указанное значение количества оборотов шпинделя допускается снижение данного значения с пропорциональным уменьшением подачи и скорости резания.

Концевые 4-зубые фрезы Серия 05

Назначение: для получистовой и чистовой обработки конструкционных сталей и нержавеющих сплавов.

Основные геометрические характерстики

d -0.02, мм	I 1, мм	12, мм	Маркировка
3	50	8	05.03.050.08.EE
4	53	11	05.04.053.11.EE
5	53	13	05.05.053.13.EE
6	53	13	05.06.053.13.EE
8	64	19	05.08.064.19.EE
10	72	22	05.10.072.22.EE
12	80	26	05.12.080.26.EE
14	80	26	05.14.080.26.EE
16	92	32	05.16.092.32.EE

С радиусом при вершине

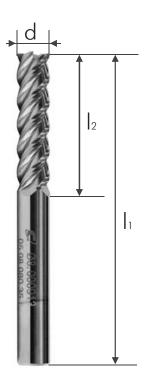
d 1-0.02, мм	I1, mm	1 2, mm	R, мм	Маркировка
6	53	13	0,6	05.06.053.13.EE.R06
8	64	19	0,8	05.08.064.19.EE.R08
10	72	22	1,0	05.10.072.22.EE.R10
12	80	26	1,2	05.12.080.26.EE.R12
14	80	26	1,4	05.14.080.26.EE.R14
16	92	32	1,6	05.16.092.32.EE.R16

С фаской при вершине

d 1-0.02, мм	I1, mm	1 2, mm	Fx45°, мм	Маркировка
3	50	8	0,1	05.03.050.08.EE.F01
4	53	11	0,1	05.04.053.11.EE.F01
5	53	13	0,1	05.05.053.13.EE.F01
6	53	13	0,1	05.06.053.13.EE.F01
8	64	19	0,1	05.08.064.19.EE.F01
10	72	22	0,1	05.10.072.22.EE.F01
12	80	26	0,1	05.12.080.26.EE.F01
14	80	26	0,15	05.14.080.26.EE.F015
16	92	32	0,15	05.16.092.32.EE.F015

ЕЕ - тип обрабатываемого материала

EE	Тип материала						
10	Конструкционные стали твердостью до 32 HRC						
11	Конструкционные стали твердостью до 45 HRC						
21	Нержавеющие стали твердостью до 32 HRC						
22	Нержавеющие стали твердостью до 45 HRC						


Материал	Твердость	Скорость	Диаметр инструмента, мм									
	HRC	резания (м/мин)	3	4	5	6	8	10	12	14	16	
		(141/1417111)		Подача /	Число о	борото	в шпинд	еля, мм	/мин / с	б/мин		
	27,8	44	150	130	135	130	110	100	90	100	160	
Нержавею-	27,0		4 671	3 503	2 803	2 335	1 752	1 401	1 168	1001	876	
щие	22,2	56	240	190	200	190	170	155	160	150	270	
стали	22,2	30	5 945	4 459	3 567	2 972	2 229	1 783	1 486	1274	1115	
	42.7	22	120	120	120	120	110	90	90	90	150	
	42,7	32	4200	3200	2500	2100	1600	1300	1100	900	800	
	40,8	40	120	110	120	130	130	100	100	100	140	
			3 397	3 185	2 548	2 123	1 592	1 274	1 062	910	796	
V	35,5	56	210	210	210	225	225	190	180	180	270	
Конструк-	33,3	50	5 945	4 459	3 567	2 972	2 229	1 783	1 486	1274	1115	
ционные стали	29,2	76	360	390	390	355	355	260	260	250	360	
Стали	23,2	70	8 086	6 051	4 841	4034	3 025	2 420	2 017	1 729	1513	
	23	100	360	410	460	446	510	550	510	500	480	
	23	100	10616	7 962	6 369	5 308	3 981	3 185	2 654	2 275	1190	
	21,3	112	410	460	560	570	570	640	620	610	670	
	2.,3	. 12	11890	8 917	7 134	5 945	4 459	3 567	2 972	2 548	2229	

^{*} Режимы резания расчитаны на период стойкости инструмента равному 60 мин и могут быть изменены, исходя из конкретных условий обработки.

При отсутствии возможности установить указанное значение количества оборотов шпинделя допускается снижение данного значения с пропорциональным уменьшением подачи и скорости резания.

Концевые 4-зубые фрезы

Серия 05 удлиненные

Назначение: для чистовой и получистовой обработки конструкционных сталей и нержавеющих сталей.

Основные геометрические характеристики

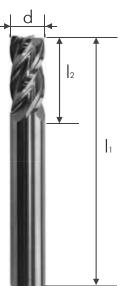
d -0.02, mm	I1, mm	l 2, mm	Маркировка
3	53	15	05.03.053.15.EE
5	64	20	05.05.064.20.EE
6	80	30	05.06.080.30.EE
8	80	35	05.08.080.35.EE
10	108	60	05.10.108.60.EE
12	108	60	05.12.108.60.EE
14	108	60	05.14.108.60.EE
16	162	85	05.16.162.85.EE

С фаской при вершине

d 1-0.02, мм	11, mm	12, mm	Fx45°, _{мм}	Маркировка
3	53	15	0,1	05.03.053.15.EE.F01
5	64	20	0,1	05.05.064.20.EE.F01
6	80	30	0,1	05.06.080.30.EE.F01
8	80	35	0,1	05.08.080.35.EE.F01
10	108	60	0,1	05.10.108.60.EE.F01
12	108	60	0,1	05.12.108.60.EE.F01
14	108	60	0,15	05.14.108.60.EE.F015
16	162	85	0,15	05.16.162.85.EE.F015

ЕЕ - тип обрабатываемого материала

EE	Тип материала						
10	Конструкционные стали твердостью до 32 HRC						
11	Конструкционные стали твердостью до 45 HRC						
21	Нержавеющие стали твердостью до 32 HRC						
22	Нержавеющие стали твердостью до 45 HRC						


Материал	Твердость	Скорость	Диаметр инструмента, мм									
	HRC	резания (м/мин)	3	4	5	6	8	10	12	14	16	
		(101/1010111)		Подача /	Число о	борото	в шпинд	еля, мм	/мин / с	б/мин		
	27,8	44	150	130	135	130	110	100	90	100	160	
Нержавею-	27,0		4 671	3 503	2 803	2 335	1 752	1 401	1 168	1001	876	
щие	22,2	56	240	190	200	190	170	155	160	150	270	
стали	22,2	30	5 945	4 459	3 567	2 972	2 229	1 783	1 486	1274	1115	
	42.7	32	120	120	120	120	110	90	90	90	150	
	42,7		4200	3200	2500	2100	1600	1300	1100	900	800	
	40,8	40	120	110	120	130	130	100	100	100	140	
			3 397	3 185	2 548	2 123	1 592	1 274	1 062	910	796	
Value = 100 m/s	35,5	56	210	210	210	225	225	190	180	180	270	
Конструк- ционные	33,3	30	5 945	4 459	3 567	2 972	2 229	1 783	1 486	1274	1115	
стали	29,2	76	360	390	390	355	355	260	260	250	360	
Clanin	23/2	, 0	8 086	6 051	4 841	4034	3 025	2 420	2 017	1 729	1513	
	23	100	360	410	460	446	510	550	510	500	480	
	23	100	10 616	7 962	6 369	5 308	3 981	3 185	2 654	2 275	1190	
	21,3	112	410	460	560	570	570	640	620	610	670	
	2.,3		11890	8 917	7 134	5 945	4 459	3 567	2 972	2 548	2229	

^{*} Режимы резания расчитаны на период стойкости инструмента равному 60 мин и могут быть изменены, исходя из конкретных условий обработки.

При отсутствии возможности установить указанное значение количества оборотов шпинделя допускается снижение данного значения с пропорциональным уменьшением подачи и скорости резания.

Концевые 4-зубые фрезы

Серия 06

Назначение: для черновой, получистовой и чистовой обработки конструкционных сталей, а также для нержавеющих титановых и жаропрочных сплавов.

Основные геометрические характеристики

d 1-0.02, мм	11, мм	12, мм	Маркировка
5	53	13	06.05.053.13.EE
6	53	13	06.06.053.13.EE
8	64	19	06.08.064.19.EE
10	72	22	06.10.072.22.EE
12	80	26	06.12.080.26.EE
14	80	26	06.14.080.26.EE
16	92	32	06.16.092.32.EE

С радиусом при вершине

d 1-0.02, мм	I 1, мм	12, mm	R, мм	Маркировка
6	53	13	0,6	06.06.053.13.EE.R06
8	64	19	0,8	06.08.064.19.EE.R08
10	72	22	1,0	06.10.072.22.EE.R10
12	80	26	1,2	06.12.080.26.EE.R12
14	80	26	1,4	06.14.080.26.EE.R14
16	92	32	1,6	06.16.092.32.EE.R16

С фаской при вершине

d 1-0.02, мм	I 1, мм	1 2, mm	Fx45°, мм	Маркировка
5	53	13	0,1	06.05.053.13.EE.F01
6	53	13	0,1	06.06.053.13.EE.F01
8	64	19	0,1	06.08.064.19.EE.F01
10	72	22	0,1	06.10.072.22.EE.F01
12	80	26	0,1	06.12.080.26.EE.F01
14	80	26	0,15	06.14.080.26.EE.F015
16	92	32	0,15	06.16.092.32.EE.F015

ЕЕ – тип обрабатываемого материала

EE	Тип материала						
11	Конструкционные стали твердостью до 45 HRC						
21	Нержавеющие стали твердостью до 32 HRC						
22	Нержавеющие стали твердостью до 45 HRC						
30	Титановые сплавы						
40	Жаропрочные сплавы						

Материал	Тоориоси	Cuonosti	Диаметр инструмента, мм						
материал	Твердость HRC	Скорость резания	5	6	8	10	12	14	16
	Tine	м/мин		Подач	а / Число мм/к	оборот лин / об/	гов шпи мин	нделя,	
	26.6	1.1	29	80	28	28	32	35	39
	36,6	11	701	584	438	350	292	250	219
Титановые	27.0	25	98	111	100	98	115	127	167
сплавы	27,8	35	2 229	1 858	1 393	1 115	929	796	697
	20.2	75	229	271	239	229	263	293	418
	20,3	75	4 777	3 981	2 986	2 389	1 990	1 706	1 493
	42,7	10	20	19	18	17	16	15	22
	72,7	10	637	531	398	318	265	227	199
	41,8	16	41	37	33	31	29	29	38
Жаропрочные	71,0	10	1 019	849	637	510	425	364	318
стали	39,8	20	56	51	45	41	38	36	56
	39,0	20	1 274	1 062	796	637	531	455	398
	34,4	22	67	61	53	45	42	44	61
			1 401	1 168	876	701	584	500	438
	27,8	24	79	71	61	55	51	52	67
			1 529	1 274	955	764	637	546	478
Hannananan	27,8	55	168	163	140	126	117	125	197
Нержавеющие			3 503	2 919	2 189	1 752	1 460	1 251	1 095
стали	22,2	70	250	238	212	196	201	191	334
	22,2		4 459	3 715	2 787	2 229	1 858	1 592	1 393
	42,7	40	153	153	134	117	115	109	191
	72,7	40	2 548	2 123	1 592	1 274	1 062	910	796
	40,8	50	153	159	135	127	127	127	179
	10,0	30	3 185	2 654	1 990	1 592	1 327	1 137	995
Конструкционные	35,5	70	268	282	256	241	230	229	334
стали	33,3	, 0	4 459	3 715	2 787	2 229	1 858	1 592	1 393
	20.2	0.5	484	444	378	327	323	311	454
	29,2	95	6 051	5 042	3 782	3 025	2 521	2 161	1 891
	23	125	704	713	758	803	773	764	836
	23	123	8 917	7 431	5 573	4 459	3 715	3 185	2 787
	21.2	1.40	573	557	637	685	637	626	597
	21,3	140	7 962	6 635	4 976	3 981	3 317	2 843	2 488

^{*} Режимы резания расчитаны на период стойкости инструмента равному 60 мин и могут быть изменены, исходя из конкретных условий обработки.

При отсутствии возможности установить указанное значение количества оборотов шпинделя допускается снижение данного значения с пропорциональным уменьшением подачи и скорости резания.

Концевые 10-зубые фрезы

Серия 07

Назначение: для чистовой обработки нержавеющих сталей, титановых и жаропрочных сплавов.

Основные геометрические характеристики

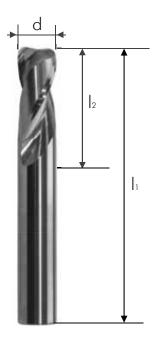
d 1-0.02, mm	I 1, мм	1 2, mm	Маркировка
10	72	32	07.10.072.32.EE
12	80	36	07.12.080.36.EE
14	80	36	07.14.080.36.EE
16	92	38	07.16.092.38.EE

С фаской при вершине

d 1-0.02, мм	I 1, мм	12, мм	Fx45°, мм	Маркировка
10	72	32	0,1	07.10.072.32.EE.F01
12	80	36	0,1	07.12.080.36.EE.F01
14	80	36	0,15	07.14.080.36.EE.F015
16	92	38	0,15	07.16.092.38.EE.F015

EE – тип обрабатываемого материала

EE	Тип материала			
22	Нержавеющие сплавы твердостью до 45 HRC			
30	Титановые сплавы			
40	Жаропрочные сплавы			


Marray	T	Cuana		Диаметр инс	трумента, ми	Л
Материал	Твердость HRC	Скорость резания,	10	12	14	16
		м/мин	Подача / Ч	łисло оборот / об/	гов шпиндел /мин	я, мм/мин
Титацовию	36,6	11	70	79	88	99
Титановые сплавы	30,0	' '	350	292	250	219
	27,8	35	245	288	318	418
	27,0	33	1 115	929	796	697
	20,3	75	573	657	734	1045
	20,5	/3	2 389	1 990	1 706	1 493
	42,7	10	17	16	15	12
Жаропрочные сплавы			318	265	227	199
СПЛАВЫ	41,8	16	31	29	29	38
			510	425	364	318
	20.0	20	41	38	36	56
	39,8	20	637	531	455	398
	24.4	22	45	42	44	61
	34,4	22	701	584	500	438
	27.0	24	55	51	52	67
	27,8	24	764	637	546	478
Нержавеющие сплавы	27,8	55	126	117	125	197
	27,0	55	1 752	1 460	1 251	1 095
CIDIARDI	22,2	70	126	117	125	197
	22,2	,0	2 229	1 858	1 592	1 393

^{*} Режимы резания расчитаны на период стойкости инструмента равному 60 мин и могут быть изменены, исходя из конкретных условий обработки.

При отсутствии возможности установить указанное значение количества оборотов шпинделя допускается снижение данного значения с пропорциональным уменьшением подачи и скорости резания.

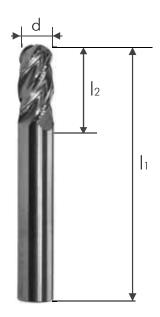
Концевые 2-зубые радиусные фрезы

Серия 08

Назначение: для высокоскоростной обработки легких сплавов.

Основные геометрические характеристики

d -0.02, мм	I 1, мм	12, мм	12, мм	Маркировка
6	53	13	1,0	08.06.053.13.00.R10
8	64	19	1,4	08.08.064.19.00.R14
10	72	22	1,8	08.10.072.22.00.R18
12	80	26	2,2	08.12.080.26.00.R22
14	80	26	2,6	08.14.080.26.00.R26
16	92	32	3,0	08.16.092.32.00.R30


Материал	Скорость	Диаметр инструмента, мм							
	резания,	6	8	10	12	14	16		
	м/мин	Подача / Число оборотов шпинделя, мм/мин / об/мин							
Алюминий и	450	720	880	1120	1440	1910	2500		
его сплавы		24000	18 000	14400	12 000	10300	9 000		
Медь и	200	240	280	380	480	530	890		
ее сплавы	200	15000	11200	9000	7500	6400	5600		

^{*} Режимы резания расчитаны на период стойкости инструмента равному 60 мин и могут быть изменены, исходя из конкретных условий обработки.

При отсутствии возможности установить указанное значение количества оборотов шпинделя допускается снижение данного значения с пропорциональным уменьшением подачи и скорости резания.

Концевые 4-х зубые фрезы с полным радиусом

Серия 09

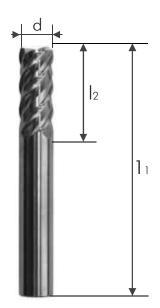
Назначение: для получистовой и чистовой обработки конструкционных сталей, а также нержавеющих, титановых и легких сплавов.

Основные геометрические характеристики

d 1-0.02, мм	I 1, мм	12, мм	R, мм	Маркировка
10	72	32	5,0	09.10.072.32.EE.R50
12	80	34	6,0	09.12.080.34.EE.R60
14	80	36	7,0	09.14.080.36.EE.R70
16	92	38	8,0	09.16.092.38.EE.R80

ЕЕ - тип обрабатываемого материала

EE	Тип материала			
00	Легкие сплавы			
11	Конструкционные стали твёрдостью до 45HRC			
22	Нержавеющие стали твёрдостью до 45HRC			
30	Титановые сплавы			


Материал	Твердость	Скорость	Диаметр инструмента, мм					
•	HRC	резания	10	12	14	16		
		(м/мин)	Подача / Число оборотов шпинделя, мм/мин / об/мин					
Алюминий и его сплавы	-	350	1680 11 146	2160 9 289	2866 7 962	3762 6 967		
Медь и			576	713	803	1 338		
ее сплавы	-	280	8 917	7 431	6 369	5 573		
	36,6	11	28	32	35	39		
	30,0	11	6	5	4	3		
Титановые сплавы	27,8	35	98	115	127	167		
	27,0	33	19	16	14	8		
	20,3	75	229	263	293	418		
	20,3		41	33	30	18		
	27,8 22,2	55	126	117	125	197		
Нержавеющие			1 752	1 460	1 251	1 095		
стали		70	196	201	191	334		
	22,2		2 229	1 858	1 592	1 393		
	42,7	40	117	115	109	191		
			1 274	1 062	910	796		
	40.0	50	127	127	127	179		
	40,8		1 592	1 327	1 137	995		
Конструкционные стали	35,5	70	241	230	229	334		
Стали	33,3	70	2 229	1 858	1 592	1 393		
		0-	327	323	311	454		
	29,2	95	3 025	2 521	2 161	1 891		
	21.2	1.40	685	637	626	597		
	21,3	140	4 459	3 715	3 185	2 787		
	23	125	803	773	764	836		
	23	123	3 981	3 317	2 843	2 488		

^{*} Режимы резания расчитаны на период стойкости инструмента равному 60 мин и могут быть изменены, исходя из конкретных условий обработки.

При отсутствии возможности установить указанное значение количества оборотов шпинделя допускается снижение данного значения с пропорциональным уменьшением подачи и скорости резания.

Концевые 4-х зубые фрезы для высокопроизводительной чистовой обработки

Серия 10

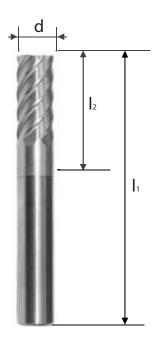
Назначение: для чистовой обработки конструкционных, нержавеющих сталей, жаропрочных и титановых сплавов.

Основные геометрические характеристики

d -0.02, мм	I1, mm	12, мм	Маркировка
5	53	15	10.05.053.15.EE
6	53	15	10.06.053.15.EE
8	64	22	10.08.064.22.EE
10	72	24	10.10.072.24.EE
12	80	28	10.12.080.28.EE
14	80	28	10.14.080.28.EE
16	92	34	10.16.092.34.EE

ЕЕ - тип обрабатываемого материала

EE	Тип материала
11	Конструкционные стали твердостью до 45HRC
21	Нержавеющие сплавы твердостью до 32HRC
22	Нержавеющие сплавы твердостью до 45HRC
30	Титановые сплавы
40	Жаропрочные сплавы


Материал	Твердость	Скорость	Диаметр инструмента, мм						
Материал	HRC	резания м/мин	5	6	8	10	12	14	16
			Подача / Число оборотов шпинделя, мм/мин / об/мин						
			27	30	30	30	35	35	40
	36,6	11	700	600	450	350	300	250	220
Титановые	27.0	25	100	100	100	100	115	130	170
сплавы	27,8	35	2200	1900	1400	1100	950	800	700
	20,3	75	230	240	240	240	260	300	400
	20,3	73	4800	4000	3000	2400	2000	1700	1800
	42,7	10	20	20	20	15	15	15	20
	,,	. 0	650	550	400	320	260	230	200
	41,8	16	35	35	35	30	30	30	35
Жаропрочные	, -	-	1000	850	650	510	430	370	320
стали	39,8	20	55	50	45	40	40	35	55
	•		1300	1100	800	650	530	460	400
	34,4	22	65	60	55	45	40	45	60
	-		1400	1200	900	700	600	500	450
	27,8	24	80	70	60	55	50	50	65
	,-		1500	1300	960	770	640	550	500
Нержавеющие	27,8	55	140	140	140	140	140	160	180
стали			3500	3000	2200	1800	1500	1300	1100
Cranin	22,2	70	250	240	200	200	200	200	300
	-		4500	3700	2800	2200	1900	1600	1400
	42,7	40	130 2500	130	130	130	130	130 900	150 800
				2100	1600	1300	1100		
	40,8	50	150	150	150 2000	150 1600	150 1300	150	180 1000
			3200 270	2700 270	270	270	270	1150 270	330
Конструкционные	35,5	125	4500	3700	2800	2200	1900	1600	1400
стали									450
	29,2	125	400 6000	400 5000	400 3800	400 3000	400 2500	400 2200	1900
			550	550	550	600	600	600	600
	23	125	8000	6600	5000	4000	3300	2800	2500
	21,3	140	700	700	700	800	800	800	800
			9000	7500	5600	4500	3700	3200	2800

^{*} Режимы резания расчитаны на период стойкости инструмента равному 60 мин и могут быть изменены, исходя из конкретных условий обработки.

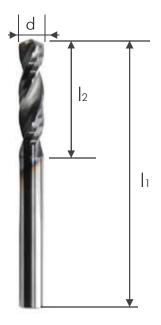
При отсутствии возможности установить указанное значение количества оборотов шпинделя допускается снижение данного значения с пропорциональным уменьшением подачи и скорости резания.

Концевые 6-зубые фрезы

Серия 11

Назначение: для чистовой обработки закаленных сталей.

Основные геометрические характеристики


d -0,03, мм	I 1, мм	I2, mm	Маркировка
10	72	22	11.10.072.22.11
12	80	26	11.12.080.26.11
14	80	30	11.14.080.30.11
16	92	34	11.16.092.34.11

	Твердость	Скорость резания (м/мин)	Диаметр инструмента, мм			
	HRC		10	12	14	16
			Подача / Число оборотов шпинделя, мм/мин / об/мин			
Конструкционные стали	42,7	45	345	320	305	285
			1 400	1 200	1 025	900

^{*} Режимы резания расчитаны на период стойкости инструмента равному 60 мин и могут быть изменены, исходя из конкретных условий обработки.

При отсутствии возможности установить указанное значение количества оборотов шпинделя допускается снижение данного значения с пропорциональным уменьшением подачи и скорости резания.

Сверло универсальное

Назначение: обработка конструкционных, нержавеющих сталей и легких сплавов.

Основные геометрические характеристики

d -0.02, мм	I 1, мм	I ₂ , mm	Маркировка
3,0	53	13	01.030.053.13.EE
3,1	53	13	01.031.053.13.EE
3,2	53	13	01.032.053.13.EE
3,3	53	13	01.033.053.13.EE
3,4	53	13	01.034.053.13.EE
3,5	53	13	01.035.053.13.EE
3,6	53	13	01.036.053.13.EE
3,7	53	13	01.037.053.13.EE
3,8	53	13	01.038.053.13.EE
3,9	53	13	01.039.053.13.EE
4,0	53	15	01.040.053.15.EE
4,1	53	15	01.041.053.15.EE
4,2	53	15	01.042.053.15.EE
4,3	53	15	01.043.053.15.EE
4,4	53	15	01.044.053.15.EE
4,5	53	15	01.045.053.15.EE
4,6	53	15	01.046.053.15.EE
4,7	53	15	01.047.053.15.EE
4,8	53	15	01.048.053.15.EE
4,9	53	15	01.049.053.15.EE
5,0	64	18	01.050.064.18.EE
5,1	64	18	01.051.064.18.EE
5,2	64	18	01.052.064.18.EE
5,3	64	18	01.053.064.18.EE
5,4	64	18	01.054.064.18.EE
5,5	64	18	01.055.064.18.EE
5,6	64	18	01.056.064.18.EE
5,7	64	18	01.057.064.18.EE
5,8	64	18	01.058.064.18.EE
5,9	64	18	01.059.064.18.EE
6,0	64	21	01.060.064.21.EE
6,1	64	21	01.061.064.21.EE
6,2	64	21	01.062.064.21.EE
6,3	64	21	01.063.064.21.EE
6,4	64	21	01.064.064.21.EE
6,5	64	21	01.065.064.21.EE

d -0.02, мм	I 1, мм	12, мм	Маркировка
6,6	64	21	01.066.064.21.EE
6,7	64	21	01.067.064.21.EE
6,8	64	21	01.068.064.21.EE
6,9	64	21	01.069.064.21.EE
8,0	64	27	01.080.064.27.EE
8,1	64	27	01.081.064.27.EE
8,2	64	27	01.082.064.27.EE
8,3	64	27	01.083.064.27.EE
8,4	64	27	01.084.064.27.EE
8,5	64	27	01.085.064.27.EE
8,6	64	27	01.086.064.27.EE
8,7	64	27	01.087.064.27.EE
8,8	64	27	01.088.064.27.EE
8,9	64	27	01.089.064.27.EE
10,0	72	33	01.100.072.33.EE
10,1	72	33	01.101.072.33.EE
10,2	72	33	01.102.072.33.EE
10,3	72	33	01.103.072.33.EE
10,4	72	33	01.104.072.33.EE
10,5	72	33	01.105.072.33.EE
10,6	72	33	01.106.072.33.EE
10,7	72	33	01.107.072.33.EE
10,8	72	33	01.108.072.33.EE
10,9	72	33	01.109.072.33.EE
12,0	80	39	01.120.080.39.EE
12,1	80	39	01.121.080.39.EE
12,2	80	39	01.122.080.39.EE
12,3	80	39	01.123.080.39.EE
12,4	80	39	01.124.080.39.EE
12,5	80	39	01.125.080.39.EE
12,6	80	39	01.126.080.39.EE
12,7	80	39	01.127.080.39.EE
12,8	80	39	01.128.080.39.EE
12,9	80	39	01.129.080.39.EE
14,0	80	45	01.140.080.45.EE
14,1	64	45	01.141.080.45.EE
14,2	64	45	01.142.080.45.EE
14,3	64	45	01.143.080.45.EE
14,4	64	45	01.144.080.45.EE

d -0.02, мм	I 1, мм	12, мм	Маркировка
14,5	64	45	01.145.080.45.EE
14,6	64	45	01.146.080.45.EE
14,7	64	45	01.147.080.45.EE
14,8	64	45	01.148.080.45.EE
14,9	64	45	01.149.080.45.EE
16,0	92	51	01.160.092.51.EE
16,1	92	51	01.161.092.51.EE
16,2	92	51	01.162.092.51.EE
16,3	92	51	01.163.092.51.EE
16,4	92	51	01.164.092.51.EE
16,5	92	51	01.165.092.51.EE
16,6	92	51	01.166.092.51.EE
16,7	92	51	01.167.092.51.EE
16,8	92	51	01.168.092.51.EE
16,9	92	51	01.169.092.51.EE

ЕЕ - тип обрабатываемого материала

EE	Тип материала
11	Конструкционные стали с твердостью до 45HRC
22	Нержавеющие сплавы с твердостью до 45HRC
00	Легкие сплавы и стали

Материал	Твердость HRC	Скорость резания (м/мин)	Диаметр инструмента, мм			
			10	12	14	16
			Подача / Число оборотов шпинделя, мм/мин / об/мин			
Конструкционные стали	45	18	103-256	96-204	85-286	135-439
			1146-1911	717-1146	478-717	339-478
Нержавеющие стали	45	15	68-172	65-135	60-200	90-300
			955-1592	597-955	398-597	283-398
Легкие сплавы	-	75	240	260	280	300
			2 400	2 000	1 700	1 500

^{*} Режимы резания расчитаны на период стойкости инструмента равному 60 мин и могут быть изменены, исходя из конкретных условий обработки.

При отсутствии возможности установить указанное значение количества оборотов шпинделя допускается снижение данного значения с пропорциональным уменьшением подачи и скорости резания.

442960, Россия, Пензенская обл., г. Заречный, Проспект Мира, 1 Тел.: (8412) 23-29-98

Факс: (8412) 60-17-94

E-mail: market@startatom.ru

www.startatom.ru